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MGTR

e Multi-granular context encoding is integrated
in a Transformer-based motion prediction
framework for the first time.

e LiDAR is introduced as an additional rich 3D
context information to overcome limitations of
pre-built HD maps.

e SOTA performance has been achieved on
Waymo motion prediction dataset (rank 15t as
of the paper submission date).

Motion Prediction Visualization



Motivation-1

Single-granular context encoding is not enough for all agents.

Map context as an example, during map vectorization, if

e @ ~  with same number of map tokens:
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Vectorized map at high granularity

that providing more fine-grained road structure

information (e.g., curvature).

/- 2. Low-granularity map provides a larger perception
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\ Distinct motion patterns of different types of agents result

Vectorized map at low granularity o . )
in different needs of granularity (e.g. vehicles and

——> Map polylines of potential moving area of pedestrians). Therefore, it's beneficial to make
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multi-granular context accessible to every agent.



Motivation-2

Using only pre-built maps as context input has limitations that can be addressed by LiDAR.

Bushes Tree trunks Walls At least two types of important context information are

missing from traditional pre-built maps:

1. Uncountable amorphous regions that are hard to
represent as instances in maps, such as road

verges, bushes and walls.

2. Temporary road structures that are not included in
maps, such as temporary traffic cones and

construction zones.

LiDAR, serving as a dense online perception
representation, is able to provide aforementioned context

information to improve motion prediction performance.




Framework: An overview
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Framework: Transformer encoder

Agents HD Map

r Agent Tokens Selected Map Tokens Selected LIDAR Tokens

Auxiliary Future Predictions

Multimodal input, including agents, HD map and
LiDAR.

Multi-Granular context encoder encodes HD map
and LiDAR in multiple granularities.

Motion-aware context search is introduced to
select more meaningful context for agents with
different motion patterns.

Local self attention is adopted to aggregate
information from multimodal multi-granular tokens.



Framework: Transformer encoder

Agents HD Map
« ™ . . . .
e Multimodal input, including agents, HD map and
] LiDAR.
" Encoder .I Multi-Granular Encoder .’ Multi-Granular Encoder - Py Multi-Granular context encoder encodes HD map

and LiDAR in multiple granularities.

e Motion-aware context search is introduced to
select more meaningful context for agents with
different motion patterns.

e Local self attention is adopted to aggregate
information from multimodal multi-granular tokens.

R EIIIEI s 1 ------------------- X6 e Auxiliary future motion prediction task is added
‘ Refined Tokens K to further improve encoding performance

Auxiliary Future Predictions



Framework: Transformer decoder

PR B S S e Update positions and content feature to the next
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Quantitative Result - Validation Set

TABLE I
mAP 1
Method Vehicle Pedestrian Cyclist Average
MTR [6] 0.45 0.44 0.36 0.42
MTR++ [23] - - - 0.44
MGTR™ (Ours) 0.46 0.47 0.40 0.45
Wayformer [22] 0.35 0.35 0.29 0.33
Wayformer+LiDAR [10]*  0.37 0.37 0.28 0.34
MGTR™ (Ours) 0.38 0.44 0.32 0.38

Compare with MTR (1st of 2022 Waymo Open Dataset
Challenge) and MTR++* (1st of 2023 Waymo Open Dataset
Challenge) on average mAP of t = 3s, 5s and 8s, we show a
non-trivial improvement across all categories.

*MTR++ does not report its categorical result on validation.

Compare with Wayformer and Wayformer+LiDAR (The only
multimodal model with LiDAR input) on mAP of t = 8s*, we
show a whopping 7% improvement in terms of mAP on
pedestrian category and 4% on cyclist category.

*Wayformer series only report their mAP of 8s instead of the
average of 3s, 5s and 8s. To be fair, we compare our method
with Wayformer series on mAP of 8s as well.



Quantitative Result - Test Set

TABLE 1I
COMPARISON ON WOMD-LIDAR TEsST SET. ALL METRICS ARE AVERAGED OVER 38, 55, AND 8S.|ALL MODELS DO NOT USE MODEL ENSEMBLE.

Vehicle Pedestrian Cyclist Avg
Method minADE| minFDE| MR| mAP{ minADE| minFDE| MR| mAP{ minADE| minFDE| MR| mAP{1 mAP?{
ReCoAt [39] 0.9865 21771 0.2695 0.2667 0.4261 0.8982  0.1451 0.3208 0.8985 1.9252 0.3164 0.2258 0.2711
DenseTNT [19] 1.3462 1.9120 0.1518 0.3698 0.5013 0.9130 0.1014 0.3342 1.2687 1.8292 0.2186 0.2802  0.3281
SceneTransformer [21] 0.7094 14115 0.1480 0.3270 0.3812 0.7532  0.0971 0.2715 0.7446 1.4701  0.2239 0.2380 0.2788
GTR-R36 [40] 0.7450 1.5049  0.1477 0.4521 0.3470 0.7221  0.0741 0.4243 0.7095 1.4406  0.1772 0.4003  0.4255
DM [41] 0.7701 1.5400 0.1529 0.4725 0.3741 0.7882  0.0848 0.4172 0.7436 1.4885 0.2043 0.4005 0.4301
MTR [6] 0.7642 1.5257 0.1514 0.4494 0.3486 0.7270  0.0753 0.4331 0.7022 1.4093 0.1786 0.3561 0.4129
MTR++ [23] 0.7178 1.4321  0.1366 0.4871 0.3504 0.7305  0.0745 0.4324 0.7036 1.4190 0.1784 0.3792  0.4329
MGTR (Ours) 0.7393 1.5119  0.1497 0.4626 0.3441 0.7191  0.0722 0.4865 0.6919 1.4096  0.1675 0.4023  0.4505

This strongly signals that for non-vehicular objects, features that attend to details are key to more accurate and reliable
trajectory predictions.



Waymo Open Dataset leaderboard - Motion Prediction*

Method Name Lidardata  Object Type Evaluation Time = Soft mAP Miss Rate Overlap Date (Pacific Daylight
for training v Rate Time) Our

ensembled

All Avg Show rest model

MGTR_ens All Avg 04764 04658 2023-09-15 19:06 I
MTR++_Ens All i\Vel 04738 04634 2023-05-2315:37
MGTR All i\Vel 04599 04505 2023-09-14 21:18
GTR_ens All i\Ve] 04518 04428 2023-05-25 02:58 .
Our single
EDA_single All Avg 04510 04401 2023-08-07 07:23 mo d eI
IAIR+ All Avg 04480 04347 2023-05-23 23:56
MTR++ All Ji\Vel Otk 04329 2023-05-2312:31
GTR-R36 All i\Vel 04384 04255 2023-05-23 20:39

GIR All Avg 04365 04230 2023-05-1617:50

DM Al Avg 04362 04301 2023-05-23 23:39

*Top 10 entries on the leaderboard of motion prediction track of Waymo Open Dataset, which includes both
single model results and ensemble model results.




Qualitative Result 1
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Our method predicts that the pedestrian will
walk onto sidewalk instead of going into bushes.



Qualitative Result 2

Our method predicts that the pedestrian will
walk onto sidewalk instead of hitting the wall.




Qualitative Result 3
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Our method predicts that the cyclist will turn
left instead of cycling into trees.
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Future Directions

Model capacity and efficiency

Adapt other types of sensor inputs such as Radar, Camera images

Integration with upper stream tasks such as segmentation, detection, tracking, fusion etc.
Integration with the planning task and enrich context reasoning.



Training & Losses

MGTR employs a weighted combination of losses including
e Auxiliary task loss on future predicted trajectories,
e Classification loss on predicted intention probability,
e GMM loss in form of negative log-likelihood loss of the predicted trajectories



