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ABSTRACT

This paper addresses an important yet less-studied problem:
re-identifying groups of people in different camera views.
Group re-identification (Re-ID) is very challenging since it is
not only interfered by view-point and human pose variations
in the traditional single-object Re-ID tasks, but also suffers
from group layout and group member variations. To handle
these issues, we propose to leverage the information of multi-
grain objects: individual person and subgroups of two and
three people inside a group image. We compute multi-grain
representations to characterize the appearance and spatial
features of multi-grain objects and evaluate the importance
weight of each object for group Re-ID, so as to handle the
interferences from group dynamics. We compute the optimal
group-wise matching by using a multi-order matching pro-
cess based on the multi-grain representation and importance
weights. Furthermore, we dynamically update the importance
weights according to the current matching results and then
compute a new optimal group-wise matching. The two steps
are iteratively conducted, yielding the final matching results.
Experimental results on various datasets demonstrate the
effectiveness of our approach.
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Figure 1: (a)-(b) Left: Probe groups in cam 𝐴; Right:
The correct match groups (up) and confusing groups
(down) in cam 𝐵. (c): Illustration of deriving multi-
grain information for group Re-ID. The colored lines
and rectangles in (c) indicate the importance weights
for people/people subgroups. (Best viewed in color)

1 INTRODUCTION

Person re-identification (Re-ID) aims at matching and iden-
tifying pedestrians across non-overlapping camera views. It
is of increasing importance in visual surveillance and has at-
tracted many researches [7, 11, 14, 23, 37–40]. However, most
researches focus on individual person Re-ID, while the Re-ID
of groups of people are seldom studied. In practice, since
most events (e.g., fighting or violent actions) are performed
by groups instead of an individual, when people analyze
events across cameras, they are more interested in identify-
ing groups rather than individuals [5, 44]. Therefore, it is
non-trivial to obtain reliable group matching across cameras.

There are two more basic challenges for group Re-ID be-
sides viewpoint changes or human pose variations [14, 41]
for each individual person. (i) Group layout change: The
layout of people in a group often show large and uncontrolled
changes in different camera views. For example, in Fig. 1a,
due to the dynamic movements of people, the relative po-
sitions of people in a group have large differences in two
camera views. (ii) Group membership change: people may
often join or leave a group (cf. Fig. 1b).
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Figure 2: (a) Framework of the proposed approach. (b) Example groups for the three datasets used in our
experiment. First row: the public i-LID MCTS dataset; Second and third rows: our constructed DukeMTMC
Group and Road Group datasets. (Best viewed in color)

Most existing methods, e.g., [5, 15, 44], view the input
group image as an entire unit and extract global/semi-global
features without explicitly doing individual people match-
ing and considering layout changes to perform group-wise
matching [5, 44]. A recent study [46] attempts to use descrip-
tors of local patches to partially handle layout change and
membership change.

In this paper, we introduce the idea of group granularity
and characterize a group image by multi-grain objects: fine-
grain objects each formed by a single person, medium-grain
objects each formed by a group of two people, coarse-grain
objects each formed by a group of three people, and global-
grain object formed by the group of all people. We argue that
the multi-grain object characterisation is helpful to handle
layout and membership changes.

Let’s look at the example shown in Fig. 1a. Due to the
large layout variation and camera viewpoint change, the same
group shows large global appearance differences in two camera
views. The re-id performance is poor if merely adopting global
features for the entire group for re-identification (cf. the
down-right image in Fig. 1a). This issue can be resolved if we
include information of finer group granularity (e.g., individual
people). On the other hand, merely using the information of
individual people is also not always reliable. An example is
shown in Fig. 1b: the two groups in camera 𝐵 include visually
similar group members to the probe group in camera 𝐴. In
this case, the information of medium-level granularities (e.g.,
subgroups of two people) is helpful.

Our approach leverages the representations of multi-grain
objects (cf. Fig. 1c) for group re-identification. In addition,
motivated by the observations that groups in different cam-
eras may be interfered by group member variation, occlusion,
and mismatching, and that multi-grain objects have different
reliabilities on Re-ID performances, we propose to introduce
the importance weights for objects in each granularity to
improve the re-identification performance.

In summary, our contributions lie in three folds: (1) We
introduce the multi-grain representations for a group image

to better handle the layout change and membership change
issues, and the dynamic weighting scheme for better person
matching. (2) We solve the group-wise matching problem by
using the multi-order matching algorithm, which integrates
multi-grain representation and combines the information of
both matched and unmatched objects to achieve a more reli-
able matching result. (3) We create two challenging group
Re-ID datasets with large group member and layout varia-
tions as the existing group Re-ID datasets contain relatively
small variations in group member and group layout.

2 RELATED WORKS AND OVERVIEW

Person Re-ID has been studied for years. Most of them focus
on developing reliable features [7, 11, 17, 28, 29, 33], deriving
accurate feature-wise distance metric [2, 6, 8, 23, 35, 37, 38],
and handling local spatial misalignment between people [14,
26, 30, 31, 40, 41]. Some recent research works extend Re-
ID algorithms to more object types (e.g., cars [19, 24]) or
more complex scenarios (e.g., larger camera numbers [10],
long-term videos [16, 42, 45], untrimmed images [32, 34, 43]).

Most existing works focus on the Re-ID of individual person
and the group-level Re-ID problem is seldom considered.
Since group Re-ID contains significant group layout change
and group member variation, it introduces new challenges
and meanwhile more information to explore compared with
single/few-person view matching scenario as addressed by
single person Re-ID methods. Although some works [1, 3,
12, 27] introduce people interaction into Re-ID process, they
are only targeted at improving the Re-ID performance of
individual person. The characteristics of groups are still less
considered and not fully modeled.

Only a few works are developed to address group Re-ID
tasks [5, 15, 44, 46]. Most of them develop global or semi-
global features to perform group-wise matching. For example,
Cai et al. [5] propose a discriminative covariance descriptor
to capture the global appearance & statistic properties of
group images. Zheng et al. [44] segment a group image in-
to multiple ring regions and derive semi-global descriptors
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for each region. Lisanti et al. [15] combine sparsity-driven
descriptions of all patches into a global group representation.
Since global/semi-global features cannot capture the local
interaction information in groups, they have limitations in
handling complex scenarios with significant global appearance
variations.

Recently, Zhu et al. [46] developed a local-based method
which performs group Re-ID by selecting proper patch-pairs
and conducting patch matching between cross-view group
images. However, in order to reduce patch mismatches, this
method includes prior restrictions on vertical misalignments.
This limits their capability in handling significant group
layout changes or group member variations.

Our approach differs from the existing group Re-ID works
in two aspects: (1) The existing works perform Re-ID with
single-grain information (i.e., either global or patch level infor-
mation). Comparatively, our approach leverages multi-grain
information to fully capture the characteristics of a group.
(2) Our approach does not include any prior restrictions on s-
patial misalignments, which is able to handle arbitrary group
layout changes or group member variations.

Overview of our approach. Given the probe group im-
age captured from one camera, our goal is to find the matched
group images from a set of gallery group images captured
from another camera. We represent each group image by a
set of multi-grain objects, and extract the features for the
multi-grain objects. The matching process is an iterative pro-
cess. We compute the static and dynamic importance weights
of multi-grain objects for the probe and gallery images ac-
cording to the intermediate matching results. Then, we use
a multi-order matching algorithm to compute intermediate
matching results, which are used to update the dynamic
importance weights. We perform the two stages iteratively,
and obtain the final matching results. The entire framework
is shown in Fig. 2a.

3 MULTI-GRAIN REPRESENTATION

A group image 𝐼 contains a set of people: 𝒢 = {𝑏1, 𝑏2, . . . , 𝑏𝑁},
where 𝑁 is the number of people and 𝑏𝑖 (or simply denot-
ed by 𝑖 for presentation clarity) corresponds to the person
bounding box. The representation is computed by build-
ing multi-grain objects (people/subgroups): 1) Fine granu-
larity, including objects of individual person, 𝒪1 = {𝑖|𝑖 =
1, . . . , 𝑁}; 2) Medium granularity, including objects of two-
people subgroups, 𝒪2 = {(𝑖1, 𝑖2)|𝑖1, 𝑖2 = 1, . . . , 𝑁, 𝑖1 ≠ 𝑖2};
3) Coarse granularity, including objects of three-people sub-
groups, 𝒪3 = {(𝑖1, 𝑖2, 𝑖3)|𝑖1, 𝑖2, 𝑖3 = 1, . . . , 𝑁, 𝑖1 ̸= 𝑖2 ≠ 𝑖3};
and 4) Global granularity, referring to the entire group,
𝒪𝑔 = {(1, 2, . . . , 𝑁)}. In the extreme case there are only
two people in the group image, we simply let 𝒪2 be the
coarse granularity.

The fine granularity helps reduce the confusion in the glob-
al appearance under large layout or group member changes,
while the medium and coarse granularities, capable of cap-
turing the local layout structure in a group, help resolve the
ambiguous subgroup/person matches in the fine granularity

by incorporating local layout or co-occurrence information
in a group.

The feature of an object 𝑜 in the fine granularity, denoted
by f𝑜, is about the appearance. The feature of an object
𝑜 for the medium and coarse granularities, denoted by f𝑜,
consists of two parts: appearance, which is an aggregation of
the appearances of all people, and spatial relation. We use
the color and texture feature [8] as the appearance part of
a person. We use the relative distance & angle histograms
among individual people in an object [9] as the spatial relation
part. The representation for the global granularity is the
color+texture features of the entire group image.

4 IMPORTANCE WEIGHTING

We introduce an importance weight 𝛼𝑜 for each object 𝑜
(except the global-grain object) to indicate the object’s dis-
criminativity and reliability inside the probe group image for
group person matching. The importance weighting scheme is
partially inspired by but different from the saliency-learning
methods [40, 41, 46] for differentiating patch reliabilities in
person re-identification: (i) Our scheme aims to weight each
granularity object rather than patches; (ii) Our scheme dy-
namically adjusts the importance weights in an iterative
manner, by using the intermediate matching results at each
iteration. (cf. Fig. 2a).

4.1 Fine-grain Object

The importance weight (𝛼𝑖) for each individual person (𝑜𝑖) in
the probe image 𝐼 consists of two components: static weight,
which is only dependent on the group image, and dynamic
weight, which is dynamically updated according to the in-
termediate matching results with the gallery group images,
from another camera in our approach. The formulation is
given as follows,

𝛼𝑖 = 𝑡1(𝑖,𝒢∖𝑖) + 𝑠(𝑖,ℳ𝑖) + 𝑝(ℳ𝑖,ℳ𝒢∖𝑖), (1)

where the first term is the static weight, and the second and
third terms form the dynamic weight.

Static weight. The static weight 𝑡1(𝑖,𝒢∖𝑖), where 𝒢∖𝑖 =
𝒢 − {𝑖} denotes the set of other individual people in 𝒢, is
used to describe the stability. It is computed as follows,

𝑡1(𝑖,𝒢∖𝑖) = 𝜆𝑡1

∑︁
𝑖′∈𝒢∖𝑖

𝜌𝑖
𝜌𝑖′
, (2)

where 𝜌𝑖 is the local density around person 𝑖 in group 𝒢. It
reflects the density of people in a neighborhood around 𝑖,
which is computed by following [4].

By Eq. 2, the static weight 𝑡1 is mainly obtained by e-
valuating the relative local density ratios between person 𝑖
and his/her peer group members 𝑖′ in 𝒢. If the local density
around 𝑖 is larger than the density around his/her peer group
members 𝑖′, the stability of 𝑖 is increased, indicating that 𝑖 is
located in the center region of group 𝒢 and should be a more
reliable member in group Re-ID (cf. person 1 in Fig. 3a). On
the contrary, when 𝑖’s local density is smaller than his/her
peer group members, a small stability value will be assigned,
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indicating that 𝑖 is located in the outlier region of the group
and is less reliable (cf. person 2 in Fig. 3a).

Dynamic weight. The dynamic weight 𝑠(𝑖,ℳ𝑖)+𝑝(ℳ𝑖,ℳ𝒢∖𝑖)

consists of two terms: the saliency term 𝑠(𝑖,ℳ𝑖) and the
purity term 𝑝(ℳ𝑖,ℳ𝒢∖𝑖), where ℳ𝑖 is the set of match-
es from the gallery group images, and ℳ𝒢∖𝑖 is the set of
the matches for all people except 𝑖 in the probe image,
ℳ𝒢∖𝑖 = {ℳ𝑖′ |𝑖′ /∈ 𝒢}. The sets of matches are illustrat-
ed in Figure 3a.

The saliency term is computed as

𝑠(𝑖,ℳ𝑖) = 𝜆𝑠
𝑑𝑓 (f𝑖, fℳ𝑖)

|ℳ𝑖|
. (3)

Here 𝑑𝑓 (·) is the Euclidean distance between features. |ℳ𝑖| is
the cardinality of ℳ𝑖. fℳ𝑖 is the feature describing the set of
matches ℳ𝑖, and we use the feature of the 1

2
|ℳ𝑖|th nearest

neighbor of 𝑖 in ℳ𝑖 as done in [40, 41]. 𝜆𝑠 is a constant which
normalizes the range of 𝑠 to be within 0 to 1.

According to Eq. 3, if the appearance of an individual
person 𝑖 is discriminative, a large portion of individuals in
𝑖’s matched set ℳ𝑖 are visually dissimilar to 𝑖. This leads
to a large 𝑑𝑓 (f𝑖, fℳ𝑖) and a large saliency value [40, 41]
(cf. person 1 in Fig. 3a). Moreover, due to the variation
of group members in group Re-ID, each individual person
may have different number of matched people in his/her
ℳ𝑖. Therefore, we further introduce |ℳ𝑖| in Eq. 3, such
that person with fewer matched people can indicate more
discriminative appearance.

The purity term is computed as

𝑝(ℳ𝑖,ℳ𝒢∖𝑖) =
∑︁

𝑖′∈𝒢∖𝑖

𝜆𝑝𝑑𝑚(ℳ𝑖,ℳ𝑖′), (4)

where 𝑑𝑚(·) is the Wasserstein-1 distance [22], a measure
to evaluate the dissimilarity between two feature sets. 𝜆𝑝 is
calculated in the same way as 𝜆𝑠 in Eq. 3.

According to Eq. 4 and Fig. 3a, the purity measurement
reflects the relative appearance uniqueness of person 𝑖 inside
group 𝒢. If 𝑖 has similar appearance features as other group
members in 𝒢, their matched people in camera 𝐵 should
also be visually similar and located close to each other in
the feature space (cf. ℳ3 and ℳ4 in Fig. 3a), resulting in a
small purity value. On the other hand, if a person includes
unique appearance features in 𝒢, his/her matched people in
camera 𝐵 should have larger feature distances to those of
the other members in 𝒢, and lead to a large purity value (cf.
ℳ1 in Fig. 3a).

4.2 Medium and Coarse Grain Objects

The importance weight 𝛼𝑖1𝑖2 of a medium-grain object (𝑖1, 𝑖2)
is computed as:

𝛼𝑖1𝑖2 = 𝛼𝑖1 + 𝛼𝑖2 + 𝑡2(𝑖1, 𝑖2). (5)

Here, 𝑡2(𝑖1, 𝑖2) is the stability measure of the sub-group
(𝑖1, 𝑖2). A two-people sub-group is thought more stable if
its members are spatially closer to each other. Thus, we sim-
ply compute 𝑡2 by the inverse of spatial distance between 𝑖1
and 𝑖2.

(a) (b)

Figure 3: (a) Illustration of matched-people sets and
their distributions in the feature space (The color
solid arrows indicate the one-to-one mapping result-
s between individuals. People circled by the same-
color rectangles in camera 𝐵 are matched to the
same person in 𝐴, and belong to the same matched-
people set). (b) The derived importance weights for
multi-grain objects (individuals, 2-people subgroup-
s, 3-people subgroups) in two group images. Note:
the importance weights for some 2-people/3-people
subgroups are not displayed in order for a cleaner
illustration. (Best viewed in color)

The importance weight 𝛼𝑖1𝑖2𝑖3 of a coarse-grain object
(𝑖1, 𝑖2, 𝑖3) is computed as:

𝛼𝑖1𝑖2𝑖3 = 𝛼𝑖1𝑖2 + 𝛼𝑖2𝑖3 + 𝛼𝑖1𝑖3 + 𝑡3(𝑖1, 𝑖2, 𝑖3). (6)

Here, 𝛼𝑖1𝑖2 is the importance of a two-people pair in (𝑖1, 𝑖2, 𝑖3)
(cf. Eq. 5). 𝑡3 is the stability of a three-people subgroup.
We assume equilateral triangle as the most stable structure
for three-people subgroups and model 𝑡3 by evaluating its
similarity to equilateral triangle.

Fig. 3b shows the importance weights of some groups. From
Fig. 3b, we can see that our process can effectively set larger
weights on more discriminative & reliable objects.

4.3 Iterative Update

We utilize an iterative process which updates the impor-
tance weights and group-wise matching results iterative-
ly. We initialize the dynamic weights for all objects by 1
and compute the optimal matching through multi-order
matching (cf. Sec. 5) to obtain an initial matching result:
ℳ1,ℳ2, . . . ,ℳ𝑁 . This matching result is used to update
the dynamic importance weights. This procedure is repeated
until the importance weights become converged or the maxi-
mum iteration is reached. Although the exact convergence of
our iterative process is difficult to analyze due to the inclusion
of multi-order matching, our experiments show that most
importance weights become stable within 5 iterations, which
implies the reliability of our approach.

5 MULTI-ORDER MATCHING

Given a probe image 𝐼𝑝 and a gallery image 𝐼𝑔, our goal is
to compute the matching score between the two groups of
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people. Suppose that there are 𝑁𝑝 people in the probe image
𝐼𝑝 and 𝑁𝑔 people in the gallery image 𝐼𝑔. The goal of the
multi-order matching process aims to find: (1) an optimal
one-to-one mapping, 𝒞 = {(𝑖, 𝑗)| ∀(𝑖, 𝑗), (𝑖′, 𝑗′), 𝑖 ̸= 𝑖′, 𝑗 ̸= 𝑗′},
where (𝑖, 𝑗) (= 𝑐𝑖𝑗) denotes a match between the 𝑖th person
from the probe image and the 𝑗th person from the gallery
image, and (2) the matching score.

The objective function is formulated with multi-order po-
tentials:

𝒬(𝒞) =𝒫1(𝒞) + 𝒫2(𝒞) + 𝒫3(𝒞) + 𝒫𝑔(𝒞)

+
∑︁

𝑘1 ̸=𝑘2,𝑘1,𝑘2=1,2,3,𝑔

𝒫𝑘1𝑘2(𝒞), (7)

where 𝒫1(𝒞), 𝒫2(𝒞), 𝒫3(𝒞), and 𝒫𝑔(𝒞) are the first-order,
second-order, third-order, and global potentials, evaluating
the matching quality over each subgroup of people, and
𝒫𝑘1𝑘2(𝒞) is the inter-order potential.

5.1 Multi-order Potentials

First order potential. 𝒫1(𝒞) is used to model the matching
scores over individual people. It is calculated by the sum of
the matching scores of all the individual matches in 𝒞:

𝒫1(𝒞) =
∑︁
𝑐𝑖𝑗∈𝒞

𝑚1(𝑐𝑖𝑗) =
∑︁
𝑐𝑖𝑗∈𝒞

𝑤1(f𝑖, 𝛼𝑖, f𝑗 , 𝛼𝑗) (8)

where f𝑖, 𝛼𝑖 and f𝑗 , 𝛼𝑗 are the feature vector and importance
weight for probe-image person 𝑖 and gallery-image person
𝑗, respectively (cf. Eq. 1). 𝑚1(𝑐𝑖𝑗) = 𝑤1(f𝑖, 𝛼𝑖, f𝑗 , 𝛼𝑗) is the
matching score for match 𝑐𝑖𝑗 = (𝑖, 𝑗), calculated by:

𝑚1(𝑐𝑖𝑗) = 𝑤1(f𝑖, 𝛼𝑖, f𝑗 , 𝛼𝑗) = 𝜆𝑤1

𝜓(𝛼𝑖, 𝛼𝑗)

𝑑f (f𝑖, f𝑗)
(9)

where 𝜓(𝛼𝑖, 𝛼𝑗) =
𝛼𝑖+𝛼𝑗

1+|𝛼𝑖−𝛼𝑗 |
is the fused importance weight,

which will have large value if the importance weights of 𝛼𝑖

and 𝛼𝑗 are both large and close to each other. 𝐷f (·) is the
Euclidean distance and 𝜆𝑤1 is the normalization constant for
the first-order potential.

By Eq. 9, the matching score 𝑚1(𝑐𝑖𝑗) is computed by
the importance-weighted feature similarity 𝑤1(f𝑖, 𝛼𝑖, f𝑗 , 𝛼𝑗)
between the matched individuals 𝑖 and 𝑗.

Second order potential. 𝒫2(𝒞) is used to model the match-
ing scores over two-people subgroups:

𝒫2(𝒞) =
∑︁

𝑐𝑖1𝑗1
,𝑐𝑖2𝑗2

∈𝒞

𝑚2(𝑐𝑖1𝑗1 , 𝑐𝑖2𝑗2)

=
∑︁

𝑐𝑖1𝑗1
,𝑐𝑖2𝑗2

∈𝒞

𝑤2(f𝑖1𝑖2 , 𝛼𝑖1𝑖2 , f𝑗1𝑗2 , 𝛼𝑗1𝑗2). (10)

where f𝑖1𝑖2 , 𝛼𝑖1𝑖2 and f𝑗1𝑗2 , 𝛼𝑗1𝑗2 are the feature vector
and importance weight for probe-image subgroup (𝑖1, 𝑖2)
and gallery-image subgroup (𝑗1, 𝑗2), respectively (cf. Eq. 5).
𝑚2(𝑐𝑖1𝑗1 , 𝑐𝑖2𝑗2) = 𝑤2(f𝑖1𝑖2 , 𝛼𝑖1𝑖2 , f𝑗1𝑗2 , 𝛼𝑗1𝑗2) is the second or-
der match score between two-people subgroups (𝑖1, 𝑖2) and
(𝑗1, 𝑗2), which is calculated in a similar way as Eq. 9:

𝑤2(f𝑖1𝑖2 , 𝛼𝑖1𝑖2 , f𝑗1𝑗2 , 𝛼𝑗1𝑗2) = 𝜆𝑤2

𝜓(𝛼𝑖1𝑖2 , 𝛼𝑗1𝑗2)

𝑑f (f𝑖1𝑖2 , f𝑗1𝑗2)
(11)

Figure 4: Illustration of multi-order association
graph. Left: A cross-view group pair being matched;
Right: The multi-order association graph construct-
ed for the group pair. (Best viewed in color)

Third order potential. 𝒫3(𝒞) is used to model the match-
ing scores over three-people subgroups:

𝒫3(𝒞) =
∑︁

𝑐𝑖1𝑗1
,𝑐𝑖2𝑗2

,𝑐𝑖3𝑗3
∈𝒞

𝑚3(𝑐𝑖1𝑗1 , 𝑐𝑖2𝑗2 , 𝑐𝑖3𝑗3)

=
∑︁

𝑐𝑖1𝑗1
,𝑐𝑖2𝑗2

,𝑐𝑖3𝑗3
∈𝒞

𝑤3(f𝑖1𝑖2𝑖3 , 𝛼𝑖1𝑖2𝑖3 , f𝑗1𝑗2𝑗3 , 𝛼𝑗1𝑗2𝑗3). (12)

where 𝑤3(f𝑖1𝑖2𝑖3 , 𝛼𝑖1𝑖2𝑖3 , f𝑗1𝑗2𝑗3 , 𝛼𝑗1𝑗2𝑗3) = 𝑚3(𝑐𝑖1𝑗1 , 𝑐𝑖2𝑗2 , 𝑐𝑖3𝑗3)
is the third order match score between three-people subgroup-
s (𝑖1, 𝑖2, 𝑖3) and (𝑗1, 𝑗2, 𝑗3). It is calculated in the same way
as Eq. 11.

Global potential. The global potential is calculated by the
global matching score between probe and gallery images 𝐼𝑝
and 𝐼𝑔:

𝒫𝑔(𝒞) =
∑︁
𝒞

𝑚𝑔(𝑐𝑖1𝑗1 , 𝑐𝑖2𝑗2 , . . . , 𝑐𝑖𝑁𝑝 𝑗𝑁𝑞
)

= 𝑤𝑔(f𝑝, 𝛼𝑝, f𝑔, 𝛼𝑔) (13)

where f𝑝 and f𝑔 are the global feature vectors for the entire
group images 𝐼𝑝 and 𝐼𝑔. 𝛼𝑝 = 𝛼𝑔 = 1 are the importance
weights for global objects. In this paper, we simply use the
global feature similarity as the global matching score, as:
𝑤𝑔(f𝑝, 𝛼𝑝, f𝑔, 𝛼𝑔) =

1
𝐷f (f𝑝,f𝑔)

.

Inter-order potential. Since each match 𝑐𝑖𝑗 is described
by potentials in multiple orders (cf. Eqs. 8-13), we also
introduce inter-order potentials to properly combine these
multi-order potential information. Specifically, the inter-order
potential between orders 𝑘1 and 𝑘2 is calculated by:

𝒫𝑘1𝑘2(𝒞) =
∑︁
𝑐𝑖𝑗∈𝒞

𝑚𝑘1𝑘2(𝑐𝑖𝑗 , 𝑘1, 𝑘2) (14)

where𝑚𝑘1𝑘2(𝑐𝑖𝑗 , 𝑘1, 𝑘2) is the inter-order correlation for match
𝑐𝑖𝑗 . It is calculated by:

𝑚𝑘1𝑘2(𝑐𝑖𝑗 , 𝑘1, 𝑘2) =
𝑚𝑘1(𝑐𝑖𝑗 , 𝑘1) +𝑚𝑘2(𝑐𝑖𝑗 , 𝑘2)

1 + |𝑚𝑘1(𝑐𝑖𝑗 , 𝑘1)−𝑚𝑘2(𝑐𝑖𝑗 , 𝑘2)|

for 𝑚𝑘(𝑐𝑖𝑗 , 𝑘) =𝜆𝑘

∑︁
𝑐
𝑖
′
1𝑗

′
1

=𝑐𝑖𝑗

𝑚𝑘(𝑐𝑖′1𝑗
′
1
...𝑐

𝑖
′
𝑘
𝑗
′
𝑘
) (15)
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Figure 5: Illustration of the unmatched term in E-
q. 16. (a) is a true match pair and (b) is a false
match pair. Green and black rectangles are matched
and unmatched individuals, respectively. Since the
right group in (b) includes more individuals, we can
find more matched pairs. This may misleadingly cre-
ate a high similarity score. However, if considering
the large number of unmatched people in (b), the
matching score of (b) can be properly reduced.

where 𝜆𝑘 is the normalization constant for order 𝑘,𝑚𝑘(𝑐𝑖′1𝑗
′
1
...𝑐

𝑖
′
𝑘
𝑗
′
𝑘
)

is the intra-order match score in order 𝑘 (as in Eqs. 9 and
11). From Eq. 15, if a match 𝑐𝑖𝑗 creates large and similar
intra-order match scores in both 𝑘1 and 𝑘2 orders, it will be
considered as more valuable and reliable, and thus will have
larger inter-level potentials.

5.2 Optimization

The objective function in Eq. 7 properly integrates the infor-
mation of multi-grain objects. Thus, by maximizing Eq. 7,
we are able to obtain the optimal one-to-one mapping result
among individuals in probe and gallery groups.

To solve the multi-order matching problem in Eq. 7, we
construct a multi-order association graph to incorporate all
candidate matches & multi-order potentials in the objec-
tive function, as in Fig. 4. In Fig. 4, each layer includes all
candidate matches 𝑐𝑖𝑗 (the circular nodes) and their corre-
sponding intra-order matching scores 𝑚𝑘 (the rectangular
nodes in green, orange, or pink), which models the intra-order
potentials in a specific order. Besides, the blue rectangular
nodes linking circular nodes in different layers represent the
inter-order correlations 𝑚𝑘1𝑘2(𝑐𝑖𝑗 , 𝑘1, 𝑘2). They model the
inter-order potentials between different orders.

With this association graph, we are able to solve Eq. 7
by adapting general-purpose hyper-graph matching solvers
[13, 20, 36]. Specifically, we first initialize a mapping probabil-
ity for each candidate match in the associate graph, and then
apply reweighted random walk [13] to update these mapping
probabilities via the inter/intra-order links and potential
weights in the association graph. Finally, the mapping prob-
abilities in all layers in the association graph are combined
to obtain the optimal one-to-one mapping result from the
candidate matches [36].

5.3 Fused Matching Score

After obtaining one-to-one mapping between individual peo-
ple in two groups, we are able to calculate matching scores
accordingly. In order to obtain a more reliable matching score,
we introduce a fused scheme by integrating the information
of both matched and unmatched objects:

𝑆(𝐼𝑝, 𝐼𝑔) =
∑︁
𝑘

∑︁
(𝑖1..𝑖𝑘)∈ℛ𝑝

𝑤𝑘(f𝑖1..𝑖𝑘 , 𝛼𝑖1..𝑖𝑘 , f𝑀(𝑖1..𝑖𝑘)
, 𝛼𝑀(𝑖1..𝑖𝑘)

)

|ℛ𝑝|

− 𝜆𝑠 ·
∑︁
𝑘

⎛⎝ ∑︁
(𝑖1..𝑖𝑘)∈ℛ𝑝

𝑎𝑖1..𝑖𝑘
|ℛ𝑝|

+
∑︁

(𝑗1..𝑗𝑘)∈ℛ𝑔

𝑎𝑗1..𝑗𝑘
|ℛ𝑔 |

⎞⎠ (16)

where (𝑖1, .., 𝑖𝑘) is a person/subgroup in probe group image
𝐼𝑝, 𝑀(𝑖1..𝑖𝑘) is its one-to-one matched person/subgroup in
gallery image 𝐼𝑔. 𝑤𝑘(·) is the similarity matching score be-
tween (𝑖1, .., 𝑖𝑘) and 𝑀(𝑖1..𝑖𝑘), as in Eqs. 9 and 11. 𝛼 is the
importance weight. 𝜆𝑠=0.5 is a balancing factor. ℛ𝑝 and ℛ𝑔

are the sets of reliably matched objects in groups 𝐼𝑝 and 𝐼𝑔,
and ℛ𝑝 and ℛ𝑔 are the unmatched object sets. We select
matched object pairs with large similarity values as the reli-
ably matched objects, and put them into ℛ𝑝 and ℛ𝑔. The
remaining unmatched or less similar objects are put into ℛ𝑝

and ℛ𝑔.
From Eq. 16, our fused scheme integrates four granularities

(i.e., 𝑘 = 1, 2, 3, 𝑔) to compute the group-wise matching score.
Inside each granularity, we select matched object pairs with
high similarities to compute the similarity (the first term in
Eq. 16), so as to reduce the interference of confusing or mis-
matched people/people subgroups. Meanwhile, we introduce
an unmatched term evaluating the importance of unmatched
objects (the second term in Eq. 16). As such, we can properly
avoid misleadingly high matching scores in false group pairs
(as in Fig. 5) and obtain a more reliable result.

6 EXPERIMENTAL RESULTS

We perform experiments on three datasets: (1) the public
i-LID MCTS dataset [44] which contains 274 group images
for 64 groups; (2) our own constructed DukeMTMC Group
dataset which includes 177 group image pairs extracted from
a 8-camera-view DukeMTMC dataset [21]; (3) our own con-
structed Road Group dataset which includes 162 group pairs
taken from a two-camera crowd road scene1.

When constructing our own datasets, we use [25] to au-
tomatically detect groups, and randomly select groups with
different sizes & variations as the target groups in our dataset.
Moreover, we define two cross-view groups as the same group
when they have more than 60% members in common.

Some example groups for the three datasets are shown in
Fig. 2b. Note that the i-LID MCTS dataset suffers from low
image quality & large illumination, while the DukeMTMC
Group and Road Group datasets include severe object occlu-
sion and large layout & group member variation. To have a
fair comparison with other methods, we follow the evalua-
tion protocol in [46] and evaluate the Cumulated Matching
Characteristic (CMC) results [14] on half of each dataset.

6.1 Results for Multi-Grain Re-ID
Framework

In order to evaluate the effectiveness of our multi-grain group
Re-ID framework, we compare eight methods: (1) Only using
global features [8] of the entire group for Re-ID (Global);

1Available at http://min.sjtu.edu.cn/lwydemo/GroupReID.
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(a) (b)

(c) (d)

Figure 6: Matching results by: (a) only using infor-
mation of individuals; (b) using multi-grain informa-
tion; (c) setting equal importance weights for all indi-
viduals/subgroups; (d) using our importance evalua-
tion process to obtain importance weights. The red
and blue links indicate correct and wrong matches.
(Note: to make the illustration not too busy, we only
display the matching results between individuals.)

Table 1: Group Re-ID results on Road Group dataset

Rank 1 5 10 15 20 30
Global 15.8 31.6 43.0 48.6 54.8 61.7
Fine 62.0 82.2 89.6 95.1 96.5 97.3
Fine+Medium 66.7 87.2 93.3 96.0 96.8 97.3
Fine+Medium+Coarse 71.1 89.4 94.1 97.0 97.3 97.5
Equal-weight 55.8 78.0 88.1 92.1 93.6 97.8
Proposed-no spatial 69.6 88.6 94.0 96.2 96.5 97.4
Proposed-auto 72.3 90.6 94.1 97.1 97.5 98.0
Proposed-GT 76.0 91.8 95.3 97.2 98.0 98.0

(2) Only using features of individual people for group Re-ID
(Fine); (3) Using features of individual people and two-people
subgroups for Re-ID (Fine+Medium); (4) Using features of
individual, two-people, three-people subgroups for Re-ID
(Fine+Medium+Coarse); (5) Using our multi-grain group
Re-ID framework, but setting the importance weights for
all people/people subgroups as 1 (Equal-weight); (6) Using
our multi-grain framework, but deleting the spatial relation
features in multi-grain representation (cf. Sec. 3, Proposed-
no spatial); (7) Using our multi-grain framework, but using
the groundtruth pedestrian detection results (Proposed-GT );
(8) Using our multi-grain framework and using automatic
pedestrian detection method with 85% 𝐹1 accuracy [18] to
identify individual people in groups (Proposed-auto).

Table 1 shows the CMC results of group Re-ID on Road
Group dataset, which measures the correct match rates in
different Re-ID rank ranges. Fig. 6 shows some group-wise
matching results under different methods. We observe that:

(1) The Global method achieves poor results. This implies
that simply using global features cannot effectively handle the
challenges in group Re-ID. Comparatively, the Fine method
has obviously better performance by extracting and match-
ing individual people to handle the challenges from group

Table 2: Matching and Re-ID results on Road Group
dataset (MA: matching accuracy between individu-
als; R-1(Gr): Rank-1 CMC for group Re-ID; R-1(In):
Rank-1 CMC for individual Re-ID)

Method Single No inter No dis Hyp-E Proposed-Auto
MA(%) 83.1 87.0 88.2 86.4 88.2
R-1(Gr) 62.0 70.1 65.8 55.1 72.3
R-1(In) 60.1 68.9 63.4 53.3 71.4

dynamics. However, its performance is still restrained by
the interferences of pedestrian misdetection or mismatch-
ing (cf. Fig. 6a). These interferences are properly reduced
by the Fine+Medium and Fine+Medium+Coarse methods,
which include sub-group level information to achieve better
results. Finally, our proposed framework (Proposed-GT and
Proposed-auto), which includes four-grain information, can
achieve the best performance.

(2) The Equal-weight method has obviously lower results
than the methods with importance weights (Proposed-GT
and Proposed-auto). This clearly indicates that: a) assigning
importance weights to different people/people subgroups is
significant in guaranteeing group Re-ID performances; b)
Our proposed importance evaluation process is effective in
finding proper importance weights, such that reliable and
discriminative people/people subgroups are highlighted to
obtain satisfactory results (cf. Fig. 6c-6d).

(3) The Proposed-no spatial method achieves relatively
satisfactory results. This indicates that even when spatial
relation features are not included, our approach can still
obtain reliable performances by properly leveraging multi-
grain information and importance weights.

(4) The Proposed-auto method has similar results to the
Proposed-GT method. This also indicates that our multi-grain
group Re-ID framework has the ability to properly handle
the interferences from pedestrian misdetection. For example,
in Fig. 6a, the group in camera 𝐴 includes a false alarm
detection (the blue rectangle) which is easily confused with
the blue circled object in camera 𝐵. However, by integrating
multi-grain information in our approach, we can successfully
avoid this mismatch by considering the subgroup correlation
in higher-level granularities (cf. Fig. 6b).

6.2 Results for Multi-Order Matching

We further evaluate the performance of our multi-order match-
ing process by comparing five methods: (1) Only using a single
level (i.e., the first order level in Fig. 4) to perform matching
(Single); (2) Delete the effect of the inter-order potential
(i.e., setting all ℳ𝑘1𝑘2(𝒞) to be 0 in Eq. 7, No inter); (3)
Do not use the unmatched term (i.e., the second term in
Eq. 16) when calculating matching scores (No dis); (4) Using
a hyper-edge matching method [13] to perform matching,
which integrates multi-grain information by constructing a
mixed-type attribute (Hyp-E); (5) Our matching process
(Proposed-auto).

Table 2 shows the individual-people matching accuracy
(MA) [36] and Rank-1 CMC score for group Re-ID (R-1(Gr))
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Table 3: CMC results of Group Re-ID on different datasets

Method
Rank i-LIDS MCTS DukeMTMC Group Road Group

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
Saliency [41] 26.1 48.5 67.5 80.3 89.9 13.9 33.3 51.5 59.8 66.3 48.6 73.6 82.2 86.2 90.1
Mirror+KMFA [8] 28.3 58.4 69.8 80.5 90.6 11.0 31.5 49.7 62.9 70.8 25.7 49.9 59.5 66.9 72.1
CRRRO-BRO [44] 23.3 54.0 69.8 76.7 82.7 9.9 26.1 40.2 54.2 64.9 17.8 34.6 48.1 57.5 62.2
Covariance [5] 26.5 52.5 66.0 80.0 90.9 21.3 43.6 60.4 70.3 78.2 38.0 61.0 73.1 79.0 82.5
PREF [15] 30.6 55.3 67.0 82.0 92.6 22.3 44.3 58.5 67.4 74.4 43.0 68.7 77.9 82.2 85.2
BSC+CM [46] 32.0 59.1 72.3 82.4 93.1 23.1 44.3 56.4 64.3 70.4 58.6 80.6 87.4 90.4 92.1
Proposed-auto 37.9 64.5 79.4 91.5 93.8 47.4 68.1 77.3 83.6 87.4 72.3 90.6 94.1 97.1 97.5

of different matching methods on the Road Group dataset.
In order to further demonstrate the effectiveness of our multi-
order matching process, we also compare the Rank-1 scores
for individual Re-ID (R-1(In)) by applying different matching
methods to perform single person Re-ID. We observe that:

(1) Compared with the Single method, the Proposed method
has improved matching accuracy and group Re-ID score by in-
troducing multi-grain information to reduce the interferences
of misdetection & mismatch. Besides, the Proposed method al-
so has better individual Re-ID results than the Single method,
this also demonstrates that introducing multi-grain informa-
tion can facilitate single person Re-ID. (2) The Proposed
method has better results than the No inter method. This
indicates that the inter-order potential is useful in properly
combining multi-order information. (3) The Proposed method
has better group Re-ID results (R-1(Gr)) than the No dis
method. This further demonstrates the importance of includ-
ing the information of unmatched objects when calculating
matching scores (cf. Eq. 16). (4) The Proposed method also
has better matching accuracy & Re-ID scores than the Hyp-E
method. This demonstrates that our multi-order matching
process can make better use of the multi-grain information
in groups during matching.

6.3 Comparison with the State-of-the-art
Methods

Table 3 compares our approach with the state-of-the-art
group re-identification methods on different datasets: CRRRO-
BRO [44], Covariance [5], PREF [15], BSC+CM [46]. To
further demonstrate the effectiveness of our approach, we
also include the results of two state-of-the-art methods de-
signed for single person Re-ID, which utilize patch saliency
or a KMFA(𝑅𝜒2) distance metric to calculate image-wise
similarity (Saliency [41] and Mirror+KMFA [8]).

From Table 3, we can observe that: (1) Our approach has
better results than the existing group Re-ID methods. This
demonstrates the effectiveness of our approach. (2) The group
Re-ID methods using global features (CRRRO-BRO [44], Co-
variance [5], PREF [15]) achieves less satisfactory results.
This indicates that only using global features cannot proper-
ly handle the challenges in group Re-ID. (3) Although the
BSC+CM method achieves improved results than the global
feature-based methods by introducing fine-grain objects (i.e.,
patches) to handle group dynamics, its performance is still
obviously lower than our approach. This implies the useful-
ness of including multi-grain information. (4) Our approach

also achieves better results than the methods for single per-
son Re-ID (Saliency, Mirror+KMFA). This indicates that
single-person Re-ID methods have limitations in handling
the challenges in group Re-ID, while our approach can bet-
ter address these challenges by capturing the characteristics
of groups. (5) The improvement of our approach is more
obvious on datasets with large group layout and group mem-
ber changes (DukeMTMC Group & Road Group), this also
demonstrates the effectiveness of our approach in handling
group layout and member variations.

6.4 Computation Complexity

Finally, Table 4 shows the running time of our group Re-ID
approach on different datasets (excluding object detection &
feature extraction).

We list two time complexity values: (1) the running time
for the entire process (All image pairs), and (2) the aver-
age running time for computing the similarity of a single
group image pair (Per image pair). Table 4 shows that the
complexity of our approach is acceptable.

Table 4: Running time on three datasets (evaluated
on a PC with 2-core CPU and 8G RAM)

Datasets i-LIDS MCTS DukeMTMC Group Road Group
All image pairs 1.1 min 18.9 min 11.5 min
Per image pair 0.06 sec 0.14 sec 0.10 sec

7 CONCLUSION

This paper introduces a novel approach to address the seldom-
studied problem of group re-identification. Our approach
consists of two key ingredients: 1) a multi-grain group Re-
ID process which derives feature representations for multi-
grain objects and iteratively evaluates their importance to
handle interferences from group dynamics; 2) a multi-order
matching process which integrates multi-grain information
to obtain more reliable group matching results. Experiments
demonstrate the effectiveness of our approach. We also release
two datasets involving the realistic challenges in group Re-ID.
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