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Group Re-ID is very challenging since it is not only interfered by view-point and human pose Importance weighting to indicate the object’s discriminativity and reliability inside the probe group image for
variations in the traditional person Re-ID, but also suffers from group layout and group group person matching. Multi-order matching to integrate multi-grain representation and combines the
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® Framework & Algorithm @ Comparisons ®

Given the probe group image captured from one camera, our goal is to find the matched
group images from a set of gallery group images captured from another camera. We

, Table 1: Group Re-ID results on Road Group dataset
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multi-grain information in groups during matching.

CMC curves for different methods. Dataset from left to right: i-LIDS MCTS, DukeMTMC Group, Road Group

:
" 100 100 10C
_
: v S0 C C
Probe Image ' S 3 a0 a0 -
(Camera A) : i > § 0 — 8¢ e T
- c & 1 — O P = 2 o T
¥ : £ % z . . - s £
= c ~ Ead — - . - - - -— -
- T - 8.& — - < - —_— =
‘ : o X - o / At - o
Gallery Image i % = o> S0 | o 0/ T o o S50 &
(Camera B) ' z : = o x"' O Salercy (€. 1% = an ' —o— Salency (13 9% g 20 Y -5 Sabency 143 E%)
: = [+ (e —— Mirvor« SOMEA (28 3% = - ~ i Naeror+ KVFA [11.0%) o = Nmor+ KMFA. (25.7%)
a | J = 30 s;'-' CRARD-BR0D 23 3% = 3 . CRRRO-ER0 B %) = X CRARO-870 (77 .8%)
: s ~—~ Covarance 2% S'%| = .. -&— Covararce 21.3%) = .. - & Cosartarce G3.0%)
: <l O PREF (30 8% . 2 o PREF 223% <¥ o PREF ($S.0W)
: 10 o BSCON (X2 0% - - BSC-CME3.1% - *— BSC+CM 58.6%
" - Pyoposed-atc 3T 3% - —— ProO0sSec-2m0 47 4% - —— PODCsec- a0 T2.3%)
............
- - - " " 0 g
Multi-grain People/People- importance Evaluation Multi-order Matching  Matching Results in Multi- 1 3 5 7 9@ 11 13 15 17 = " 3 L > 8 311 1% 15 17 19 3 < - g 31 13 15 17 19
Subgroup Extraction granularity Rank Rank Hank




