

Introduction

Background:

- · State-of-art object detectors can achieve real-time detection and keep a high detection accuracy.
- Multi object tracking has been challenge mainly due to noisy detection sets and frequently switches caused by occlusion and similar appearance.
- A real-time tracking system can take us one step further to realizing a fully automatic and highly intelligent security system.

Objective:

- Integrates state-of-art object detection algorithm and multi object tracking algorithm into one real-time tracking system.
- Test the system on Drone streaming video

Data Description

Datasets:

- **PASCAL VOC:** a very popular dataset for building and evaluating algorithms for image classification, object detection, and segmentation. It includes 20 different object, such as people, animal, vehicle and other indoor object.
- MOT challenge dataset: a benchmark contains video sequences in unconstrained environments filmed with both static and moving cameras.

Data Processing:

• Configure the Drone and computer for streaming the Drone camera to computer for real-time tracking

Framework

The system can be roughly divided into two mainly part, which are object detection part and multi object tracking part. First, we will capture the image from camera and apply object detection frame by frame. For every object in one frame, we extract the appearance feature and motion feature and send these information into multi object tracking part. Then, we can get the ID of each object.

Figure 1. Framework of real-time tracking system

A Real-time UAV-Based Intelligent Tracking System

Hao Xiao, Sujie Zhu, Haotian Zhang Department of Electrical Engineering (EE) University of Washington, Seattle, WA

Object Detection & Multi Object Tracking

for maximum matching

Conclusions & Future Work Our own video An online multiple object tracking algorithm was implemented; The application can be used for UAV surveillance and pedestrian tracking; Still, there are some problems, including the frequent ID switch, trajectory fragmentations... The performance can be improved by implementing idea of tracking-by-detection, and use camera-self calibration to do 3D tracking (depth information); References **Result Analysis** [1] Wang B, Wang G, Chan K L, et al. Tracklet association by online target-specific metric learning and coherent dynamics estimation[J]. IEEE transactions on pattern analysis and Figure. 6 shows some clips of our tracker performances machine intelligence, 2016. on different datasets, including official ETH-Crossing, [2] Luo W, Xing J, Zhang X, et al. Multiple object tracking: A literature review[J]. arXiv ADL-Rundle-3 and one video shoot by ourselves. preprint arXiv:1409.7618, 2014. [3] Xiang Y, Alahi A, Savarese S. Learning to track: Online multi-object tracking by decision As shown in the Figure. 7 below, compared to the making[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: trackers for MOT Challenge, our tracking algorithm 4705-4713 [4] Yang B, Nevatia R. Multi-target tracking by online learning of non-linear motion patterns performs quite good not only on the tracking and robust appearance models[C]//Computer Vision and Pattern Recognition (CVPR), 2012 performances but also on the processing speed. IEEE Conference on. IEEE, 2012: 1918-1925.

UNIVERSITY of WASHINGTON

*We would like to thank Prof. Shapiro , TA Bindita for great lectures and help.